Outlier Reconstruction Based Distribution System State Estimation Using Equivalent Model of Long Short-term Memory and Metropolis-Hastings Sampling

نویسندگان

چکیده

The accuracy of distribution system state estimation (DDSE) is reduced when phasor measurement unit (PMU) measurements contain outliers because cyber attacks or global positioning spoofing attacks. Therefore, to enhance the robustness DDSE outliers, approximate target Metropolis-Hastings (MH) sampling, and judge prediction long short-term memory (LSTM) network, this paper proposes an outlier reconstruction based method using equivalent model LSTM network MH sampling (E-LM model), motivated by characteristics chronological correlations PMU measurements. First, derived a kernel density function. Subsequently, reasons advantages E-LM are explained analyzed from mathematical point view. proposed LSTM-based can decrease number futile iterations. Moreover, MH-based forecasting each prediction, which independent its true value. Finally, simulations conducted evaluate performance integrating into DDSE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

Bayesian Estimation of State-Space Models Using the Metropolis-Hastings Algorithm within Gibbs Sampling∗

In this paper, an attempt is made to show a general solution to nonlinear and/or non-Gaussian state space modeling in a Bayesian framework, which corresponds to an extension of Carlin, Polson and Stoffer (1992) and Carter and Kohn (1994, 1996). Using the Gibbs sampler and the Metropolis-Hastings algorithm, an asymptotically exact estimate of the smoothing mean is obtained from any nonlinear and...

متن کامل

Metropolis - Hastings Sampling Using Multivariate Gaussian Tangents

We present MH-MGT, a multivariate technique for sampling from twice-differentiable, log-concave probability density functions. MHMGT is Metropolis-Hastings sampling using asymmetric, multivariate Gaussian proposal functions constructed from Taylor-series expansion of the log-density function. The mean of the Gaussian proposal function represents the full Newton step, and thus MH-MGT is the stoc...

متن کامل

Metropolis-Hastings sampling of paths

We consider the previously unsolved problem of sampling cycle-free paths according to a given distribution from a general network. The problem is difficult because of the combinatorial number of alternatives, which prohibits a complete enumeration of all paths and hence also forbids to compute the normalizing constant of the sampling distribution. The problem is important because the ability to...

متن کامل

Accept–reject Metropolis–Hastings sampling and marginal likelihood estimation

We describe a method for estimating the marginal likelihood, based on CHIB (1995) and CHIB and JELIAZKOV (2001), when simulation from the posterior distribution of the model parameters is by the accept– reject Metropolis–Hastings (ARMH) algorithm. The method is developed for one-block and multiple-block ARMH algorithms and does not require the (typically) unknown normalizing constant of the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of modern power systems and clean energy

سال: 2022

ISSN: ['2196-5420', '2196-5625']

DOI: https://doi.org/10.35833/mpce.2020.000932